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Purpose: To develop a quality assurance (QA) workflow by using a ro-
bust, curated, manually segmented anatomic region-of-inter-
est (ROI) library as a benchmark for quantitative assessment 
of different image registration techniques used for head and 
neck radiation therapy–simulation computed tomography 
(CT) with diagnostic CT coregistration.

Materials and 
Methods:

Radiation therapy–simulation CT images and diagnostic CT 
images in 20 patients with head and neck squamous cell car-
cinoma treated with curative-intent intensity-modulated radi-
ation therapy between August 2011 and May 2012 were retro-
spectively retrieved with institutional review board approval. 
Sixty-eight reference anatomic ROIs with gross tumor and 
nodal targets were then manually contoured on images from 
each examination. Diagnostic CT images were registered with 
simulation CT images rigidly and by using four deformable 
image registration (DIR) algorithms: atlas based, B-spline, 
demons, and optical flow. The resultant deformed ROIs were 
compared with manually contoured reference ROIs by using 
similarity coefficient metrics (ie, Dice similarity coefficient) 
and surface distance metrics (ie, 95% maximum Hausdorff 
distance). The nonparametric Steel test with control was 
used to compare different DIR algorithms with rigid image 
registration (RIR) by using the post hoc Wilcoxon signed-rank 
test for stratified metric comparison.

Results: A total of 2720 anatomic and 50 tumor and nodal ROIs were 
delineated. All DIR algorithms showed improved performance 
over RIR for anatomic and target ROI conformance, as shown 
for most comparison metrics (Steel test, P , .008 after Bon-
ferroni correction). The performance of different algorithms 
varied substantially with stratification by specific anatomic 
structures or category and simulation CT section thickness.

Conclusion: Development of a formal ROI-based QA workflow for reg-
istration assessment demonstrated improved performance 
with DIR techniques over RIR. After QA, DIR implementation 
should be the standard for head and neck diagnostic CT and 
simulation CT allineation, especially for target delineation.
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Advance in Knowledge

nn Most overlap and surface 
distance metrics investigated 
showed a detectable improve-
ment in conformance with a 
manual region of interest (ROI) 
comparator by using deformable 
image registration (DIR) tech-
niques over rigid image registra-
tion (RIR) for all pooled ROIs 
(Steel test, P , .008 after Bon-
ferroni correction for multiple 
comparisons) in the specific set-
ting of registration of diagnostic 
CT images with radiation 
therapy–simulation CT images.

Implications for Patient Care

nn After proper quality assurance, 
DIR should replace RIR for radi-
ation therapy applications in-
volving registration of head and 
neck diagnostic CT images with 
radiation therapy–simulation CT 
images.

nn Validation of any image registra-
tion strategy is crucial before 
implementation in specific clin-
ical scenarios.

Deformable image registration 
(DIR) is an increasingly common 
tool for applications in image-

guided radiation therapy (1–3). DIR, 
as a tool for motion assessment and 
correction in tumors that move with 
respiration, as well as adaptive recon-
touring of target or anatomic volumes 
that alter over time, is becoming more 
widely used as vendors integrate DIR 
solutions into commercial software 
packages (4–9). Additionally, emerg-
ing data suggest that for head and 
neck cancers, DIR has demonstrable 
technical performance gain compared 
with rigid image registration (RIR) for 
adaptive radiation therapy, wherein 
a simulation computed tomographic 
(CT) data set is coregistered with 
CT-on-rails or cone-beam CT data ac-
quired during the course of radiation 
treatment (10–13).

Three-dimensional radiation ther-
apy–simulation CT (hereafter, sim-
ulation CT) data sets are the initial 
component of radiation planning. Sim-
ulation CT data sets are then manu-
ally segmented to define both tumor 
and normal tissue volumes, with sub-
sequent dose calculation performed 
by using voxel-based electron density 
maps. Consequently, as the key imag-
ing step in radiation therapy, all subse-
quent patient treatment dose delivery 
is entirely dependent on the quality of 
simulation CT processes (eg, target 
delineation, organ-at-risk segmenta-
tion, beam and intensity optimization, 
and dose calculation) (14).

The intramodality registration of 
pre- and posttherapy head and neck  
diagnostic CT with simulation CT 
data are valuable in multiple radi-
ation therapy applications, such as 
target delineation and mapping sites 
of posttherapy local-regional recur-
rences with the original simulation CT 
images and dose grid (15–18). Never-
theless, such intramodality fusion of 
diagnostic CT images and simulation 
CT images is less commonly described 
in the literature and presents specific 
obstacles to image registration. First, 
diagnostic CT acquisition is routinely 
performed by using a curved tabletop 
without standardized head position-
ing, while the simulation CT images 
are obtained by using a custom ther-
moplastic immobilization mask on a 
flat-topped table, resulting in posi-
tional differences of head and neck 
tissues (15,16). In several head and 
neck cancers, institutional use of an 
intraoral immobilization and displace-
ment device, such as a custom dental 
stent (19), results in placement of a 
new structure in the simulation CT 
examination that was not present in 
the diagnostic CT examination. Addi-
tionally, diagnostic CT typically entails 
the use of intravenous contrast mate-
rial for tumor assessment, while at 
our facility and many others, intrave-
nous contrast material is not used for 
simulation CT, resulting in intensity 
differentials for the same structures 
(10). Acquisition parameters (eg, sec-
tion thickness reconstruction [STR], 
field of view, and peak voltage) may 
not be standardized between diagnos-
tic CT and simulation CT. Finally, in 

many instances, owing to either tu-
mor progression or intervening ther-
apy (surgical resection or induction 
chemotherapy), the anatomy is funda-
mentally altered between diagnostic 
CT and simulation CT. These factors, 
among others, make registration of 
diagnostic CT images with simulation 
CT images a nontrivial task.

As part of larger efforts to im-
prove head and neck target delinea-
tion, as well as defining spatially accu-
rate mapping of local-regional failure 
sites, the purpose of this study was 
to develop a quality assurance (QA) 
workflow by using a robust, curated, 
manually segmented anatomic region-
of-intereset (ROI) library as a bench-
mark for quantitative assessment 
of different image registration tech-
niques used for coregistration of head 
and neck simulation CT images with 
diagnostic CT images.
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Table 1

Patient Characteristics

Characteristic Value

Median age (y) 63 (50–78)
Patient sex
  No. of men 15
  No. of women 5
T stage
  T1 4
  T2 5
  T3 8
  T4 2
  Tx 1
N stage
  N0 3
  N1 4
  N2 11
  N3 1
  Nx 1
Primary sites
  Base of tongue 7
  Tonsil 6
  Oral cavity 1
  Larynx 3
  Nasopharyngeal or maxillary  

  sinus
2

  Salivary gland 1
Treatment
  IMRT alone 1
  Concurrent chemotherapy  

  and IMRT
5

  Induction chemotherapy  
 � followed by concurrent 

chemotherapy and IMRT

9

  Induction chemotherapy  
  followed by IMRT

3

  Surgery followed by  
 � postoperative chemotherapy 

and IMRT

1

  Induction chemotherapy and  
 � IMRT followed by surgery

1

Note.—Data are numbers of patients, unless indicated 
otherwise. Numbers in parentheses are the range. IMRT 
= intensity-modulated radiation therapy.

Materials and Methods

Study Population
Simulation CT and diagnostic CT Dig-
ital Imaging and Communications in 
Medicine (DICOM) files of 22 patients 
with head and neck cancer treated at 
our institution between August 2011 
and May 2012 were retrospectively re-
trieved with institutional review board 
approval. Inclusion criteria were path-
ologically proven diagnosis of squa-
mous cell carcinoma of the head and 
neck, treatment with curative-intent 
intensity-modulated radiation therapy, 
and availability of nonenhanced simu-
lation CT and contrast material–en-
hanced diagnostic CT images for each 
patient, with a maximum time interval 
of 4 weeks between the two exami-
nations to minimize errors attributed 
to anatomic changes associated with 
radiation therapy or disease progres-
sion. Twenty patients were eligible, 
while two patients were excluded—
one for having massive disease pro-
gression and the other for undergoing 
surgical resection during the interval 
between diagnostic CT and simulation 
CT. Patients and treatment character-
istics are summarized in Table 1.

Imaging Characteristics
Nonenhanced simulation CT images 
were acquired after immobilizing pa-
tients with thermoplastic head and 
neck shoulder masks, with a section 
thickness of 1–3.75 mm and an x-ray 
tube current of 100–297 mA at 120 
kVp. Display field of view was 500 
mm; axial images were acquired by 
using a matrix of 512 3 512 pixels and 
reconstructed with a pixel size of 0.98 
3 0.98 mm along the x- and y-axis. 
Comparatively, contrast-enhanced 
diagnostic CT images were acquired 
with a section thickness of 1.25–3.75 
mm and an x-ray tube current of 160–
436 mA at 120 kVp. Display field of 
view was 236–300 mm, and axial im-
ages were acquired by using a matrix 
of 512 3 512 pixels, reconstructed 
with a pixel size of 0.46 3 0.46 mm 
to 0.59 3 0.59 mm along the x- and 
y-axis. One hundred twenty milliliters 

poly-smooth nonlinear registration, 
dense mutual-information deform-
able registration, and final refinement 
by using a deformable surface model 
(20). The B-spline method consisted 
of three registration steps: manually 
adjusted rigid edit, automatic rigid 
registration, and automatic deform-
able registration (21).

of contrast material were injected at a 
rate of 3 mL/sec, followed by scanning 
after a 90-second delay. (Detailed 
acquisition parameters are given in 
Table E1 [online].)

Manual Segmentation of Reference 
Anatomic ROIs
For each patient, a series of 68 refer-
ence anatomic ROIs (18 bone, three 
cartilaginous, seven glandular, 30 
muscular, six soft-tissue, and four vas-
cular ROIs), in addition to gross pri-
mary tumor volume and gross nodal 
target, were manually contoured on 
every patient’s diagnostic CT images 
and simulation CT images by both a 
3rd-year resident physician observer 
(M.N.R.) and a medical student 
(C.A.B.). Contours were subsequently 
approved on a daily basis by a radia-
tion oncologist with 7 years of expe-
rience (A.S.R.M.), and, finally, ROIs 
were reviewed by an expert attending 
head and neck radiation oncologist 
with 8 years of experience (C.D.F.). 
Manual segmentation was performed 
by using commercial treatment plan-
ning software (Pinnacle 9.0; Phillips 
Medical Systems, Andover, Mass). 
(Details of the segmented ROIs are 
available as Figure E1 and Table E2 
[online].)

Image Registration
For each patient’s DICOM data set, 
image registration was performed by 
using baseline RIR, allowing automatic 
scalable rigid registration of the diag-
nostic CT images with the simulation 
CT images by using a block-matching 
in-house graphics processing unit–
based algorithm. Subsequently, each 
data set was registered by using a 
series of open-access and commercial 
registration algorithms. Two kinds of 
commercial multistep DIR software 
were examined: atlas based (CMS 
ABAS 0.64; Elekta, Stockholm, Swe-
den) and B-spline (VelocityAI 2.8.1; 
Velocity Medical, Atlanta, Ga). Atlas-
based DIR, presented previously (20), 
consisted of five registration steps to 
deform the original diagnostic CT im-
age to the simulation CT image: linear 
registration, head pose correction, 
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Figure 1

Figure 1:  Schematic illustration demonstrates the QA workflow process. DVF = deformation vector fields, 
DxCT = diagnostic CT, RF = rigid fusion, SimCT = simulation CT, VF = vector fields.

Likewise, two noncommercial 
software algorithms, ITK demons 
(Kitware, Clifton Park, NY) (22) and 
optical flow (Castillo, Houston, Tex) 
(23), were investigated. Noncommer-
cial algorithms are often dependent on 
numerous manually entered variable 
parameters that determine the effec-
tiveness of an algorithm in registra-
tion. To provide valid comparison of 
commercial and noncommercial algo-
rithms, an optimization step was per-
formed by using approximately 100 hu-
man-verified identical landmark points 
on both diagnostic CT and simulation 
CT images and the methods that we 
have described previously (24). With 
these methods, parameters were iter-
atively varied to create varying defor-
mation fields to map the diagnostic CT 
images with the simulation CT images. 
Subsequently, these deformation fields 
were applied to the landmark points 
on the diagnostic CT images to obtain 
deformed landmark points on the sim-
ulation CT images. Euclidean distances 
in corresponding landmark points be-
tween the deformed landmark points 
and the actual landmark points on the 
simulation CT images were calculated. 
Parameters that minimized the total 
Euclidean point distances obtained 
from applying these noncommercial 
algorithms to these landmark points 
were used in the ROI comparison de-
scribed, as follows.

Deformation vector fields were ob-
tained from each image registration 
algorithm to map the deformation of 
the diagnostic CT images onto the 
simulation CT images. For the com-
mercial algorithms, the deformation 
transformed definitive voxels from the 
original diagnostic CT images onto 
the simulation CT images, while for 
the noncommercial algorithms, the 
deformation field was from the rigid 
CT images. Subsequently, in a custom-
written MATLAB program (MATLAB 
R2012a; MathWorks, Natick, Mass), 
these deformation fields were applied 
to ROIs segmented on the diagnostic 
CT images to convert them into “de-
formed ROIs” on the simulation CT 
images. Calculations (described as fol-
lows) were performed by comparing 

the “deformed ROIs” with the human-
segmented ROIs on the simulation CT 
images.

Registration Algorithm Assessment
After completion of RIR and DIR of na-
tive DICOM image files, the resultant 
deformed ROIs were compared quanti-
tatively with manually contoured refer-
ence ROIs for each of the 68 anatomic 
structures listed, plus tumor and nodal 
targets. Figure 1 shows a schematic il-
lustration of the QA workflow process 
developed on the basis of a previously 
presented software resource (TaCTICS 
[Target Contour Testing/Instructional 
Computer Software], https://github.
com/kalpathy/tacticsRT) (25–27).

For each registration-deformed 
ROI and reference ROI pair, the 
following ROI-based overlap metrics 
(28–30) were assessed: volume over-
lap, maximum and 95% maximum 
Hausdorff distance, and false-positive, 
false-negative, and standard Dice simi-
larity coefficients (DSCs).

Individual metrics are detailed in  
Table 2. The different registration algo-
rithms were compared by using differ-
ent metrics for pooled ROI overlap, then 
compared after stratification by individ-
ual ROI, anatomic subgroup, and STR.

Interobserver Variability
To interrogate the effect of inter-
observer variability in manual ROI 
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Table 2

Description of Used Metrics

Metric Symbolic Expression Description Full Agreement

Volume overlap The portion of the reference ROI that is overlapped  
  by the segmentation

1

DSC The portion of overlap between the reference ROI and  
 � segmentation relative to the size of the reference  

ROI plus the size of the segmentation

1

False-negative Dice The volume that the segmentation missed of the reference  
 � ROI relative to the size of the reference ROI plus the size  

of the segmentation

0

False-positive Dice The volume of the segmentation not found within the  
 � reference ROI relative to the size of the reference  

ROI plus the size of the segmentation

0

95% Maximum Hausdorff  
distance

The maximum distance between a point in the segmentation  
 � and that of the reference ROI; for 95% maximum  

Hausdorff, 65 percentile outliers are discarded

…

Note.—a = a point in A, A = algorithm-dependent deformed ROI volume, d(A,R) = minimum surface distance between each point in A from the surface R, FND = false-negative Dice, FPD = false-
positive Dice, h(A,R) = the maximum of the minimum of the surface distances between every point in surface A and the surface R, H(A,R) = Hausdorff distance between A and R, r = a point in R, R = 
reference anatomic manually segmented ROI volume, VO = volume overlap.

delineation on the output metrics of dif-
ferent registration techniques post hoc, 
a subset of 12 ROIs (two ROIs per each 
anatomic subgroup) were delineated by 
three expert observers in clinical target 
delineation (A.S.R.M., with 7 years of 
experience; a nonauthor, with 8 years 
of experience; and E.K.U., with 5 years 
of experience) on paired simulation CT 
and diagnostic CT sets in two patients. 
The same workflow methods described 
earlier were used to compare overlap 
and surface distance metrics obtained 
from expert segmentation with those of 
the primary observer for each registra-
tion technique.

Statistical Analysis
Statistical assessment was performed 
by using JMP version 10.2 software 
(SAS institute, Cary, NC). To assess 
algorithm performance for each metric 
listed, distributional statistics for listed 
metrics (Table 2) were tabulated for 
each anatomic ROI.

To determine the relative degree 
of potential difference of DIR com-
pared with RIR, overlap metrics for 
anatomic and target ROIs mapped by 
using DIR were compared with those 
mapped rigidly. P value thresholding 
for multiple comparisons with Bonfer-
roni correction was conducted by di-
viding the requisite a threshold of .05 
by the number of subset comparisons, 
with the resultant P value specified for 
each comparison (vide infra). Distri-
butional differences in DIR algorithms 
(atlas based, demons, optical flow, and 
B-spline) as compared with RIR alone 
were performed by using the nonpara-
metric Steel test with control (31) for 
between-algorithm differences, with 
RIR designated as the standardized 
comparator (control). Between-group 
comparisons were performed for all 
metrics for pooled ROIs and for each 
ROI separately and were reported 
with P value thresholding for multi-
ple comparisons applied graphically. 

Additional post hoc comparison of 
metrics after stratification according 
to STR and ROI anatomic subgroup 
(bones, cartilage, muscles, glands, ves-
sels, and soft tissues) was performed, 
with comparison by using Wilcoxon 
signed-rank (32) (paired comparison) 
or Kruskal-Wallis (33) (comparison of 
three or more groups) nonparametric 
tests when comparing across strata 
with P value thresholding for multiple 
comparisons. For evaluation of inter-
observer dependency, the Cronbach 
a method was performed to assess 
agreement between expert observers 
for all delineated ROIs for all tested 
registration methods for DSC metrics.

Results

Algorithm Comparative Performance
A total of 2720 anatomic ROIs were de-
lineated (68 per each DICOM file) for 
all included patients’ paired simulation 

Figure 2:  Heat map illustrates the relative performance of each of the DIR algorithms over the RIR for each anatomic structure by using all comparison metrics. Better per-
formance is indicated by colors that appear toward the blue end of the color scale. P value thresholding for multiple comparisons was used with the first threshold at P less 
than .008 for correction of multiple comparisons across four distinct registration algorithms (a = .05/6 “pairwise comparison of four DIR algorithms”) and P less than .0001 
for multiple comparisons across 68 distinct ROIs. Values shaded solid red are nonsignificantly different from rigid segmentation. FN-DSC = false-negative DSC, FP-DSC = 
false-positive DSC, GTV-N = gross nodal volume, GTV-P = gross primary tumor volume, MPC = middle pharyngeal constrictor, OF = optical flow, SPC = superior pharyngeal 
constrictor, ST = soft tissues, VO = volume overlap, 95% HD = 95% Hausdorff distance.
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Figure 2
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Figure 3

Figure 3:  Images demonstrate the deformed-reference ROI overlay. The top panels show examples of 
deformed ROIs in blue and reference ROIs in red by using RIR, while the lower panels show the same ROIs 
when registered by using DIR.

CT and diagnostic CT sets, and a total 
of 50 tumor and nodal ROIs were delin-
eated in 15 of 20 patients’ paired sets 
(five patients had no radiologic gross 
tumor or nodal targets after induction 
chemotherapy and/or surgery). Except-
ing optical flow for surface distance met-
rics (ie, 95% and maximum Hausdorff 
distance) and demons for false-negative 
Dice, for all investigated DIR algorithms 
there was a detectable improvement in 
conformance with a manual ROI com-
parator over RIR for all pooled ROIs by 
using all comparative metrics (Steel test, 
P , .008 after Bonferroni correction for 
multiple comparisons; a P value heat 
map is available as Figure E2 [online]). 
Estimation of differences between algo-
rithms varied substantially with stratifi-
cation by specific ROI; magnitude of ef-
fect size for the difference as compared 
with RIR control is illustrated as a P 
value heat map with color thresholding 
for multiple comparison correction (Fig 
2). Figure 3 shows an example of the vi-
sual comparison of the overlap between 
deformed ROIs and reference ROIs by 
using RIR versus DIR.

For similarity coefficient metrics, the 
tested atlas-based algorithm appears to 
have the best performance in this spe-
cific head and neck application (median 
DSC, 0.68; median false-negative Dice 
coefficient, 0.06; and median false-pos-
itive Dice coefficient, 0.5). Likewise, 
for surface distance metrics, the atlas-
based algorithm had the least median 
distance error (4.6-mm 95% Hausdorff 
distance; 10.6-mm maximum Hausdorff 
distance). (Figures E3 and E4 [online] 
further illustrate the overlap and sur-
face distance metrics used, respec-
tively, for all ROIs for each registration 
method as a graphic table.)

Algorithm Performance according to 
Anatomic Subgroup
The performance of each registration 
method varied significantly across dif-
ferent ROI subgroups (bones, cartilage, 
muscles, glands, vessels, and soft tis-
sues) as assessed for different met-
rics by using the Kruskal-Wallis test 
(P , .05), excepting RIR (for volume 
overlap and 95% Hausdorff distance), 
B-spline (for volume overlap), and 

demons (for 95% Hausdorff distance). 
To directly compare specific anatomic 
subgroup performance for each regis-
tration algorithm, further analysis with 
the paired Wilcoxon test showed that 
for most registration algorithms, bone 
and cartilaginous ROIs were signifi-
cantly more concordant than muscular 
and vascular ROIs (Bonferroni-cor-
rected P , .003 for multiple compar-
isons across the six ROI subgroups). 
Likewise, for each anatomic category, 
ROI conformance varied significantly 
across different registration methods 
for all assessed metrics (Kruskal-Wal-
lis test, P , .05) with comparatively 
better performance of atlas-based 
DIR, followed by B-spline, in all ROI 
subgroups (Bonferroni-corrected P , 
.005 for multiple comparisons across 

the five registration methods), as illus-
trated visually in Figure 4 for DSC and 
95% Hausdorff distance metrics. The 
tumor and nodal ROI conformance 
was best achieved with atlas-based 
software with gross primary tumor 
volume median DSC of 0.65 and 95% 
Hausdorff distance of 4.6 mm and 
gross nodal volume median DSC of 
0.67 and 95% Hausdorff distance of 
4.5 mm, respectively.

Algorithm Performance according to 
Section Thickness Reconstruction
STR of diagnostic CT for all but two 
cases was uniform at 1.25 mm, while 
the simulation CT STR was variable, 
with 10 cases reconstructed at a sec-
tion thickness of less than 3 mm (1–2.5 
mm) and 10 cases reconstructed at a 
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Figure 4

Figure 4:  (a) Box plots of DSC analysis for each registration method are shown according to anatomic ROI category. The pale line within the box indicates the 
median value, while the box limits indicate the 25th and 75th percentiles. The lines represent the 10th and 90th percentiles, and the dots represent outliers 
(Fig 4 continues).

section thickness of 3 mm or more (3–
3.75 mm). The effect of variability in 
simulation CT STR on the performance 
of individual registration methods was 
most evident for the tested B-spline al-
gorithm as shown in Table 3, a system 
dependency not typically considered in 
image-registration QA but of practical 
importance in clinical image acquisition.

Interobserver Variability
In post hoc interobserver dependency 
assessment, for each registration tech-
nique there was no significant (all P . 
.05) difference between the mean values 
for all metrics of all expert observers 
when compared with the primary ob-
server, except for the 95% Hausdorff 
distance for observer 3 in atlas-based 
and B-spline algorithms. Cronbach a 

assessment showed a minimum a value 
of 0.6527 (acceptable interobserver 
agreement) for RIR and a maximum a 
value of 0.88 for B-spline (good interob-
server agreement). This confirms that 
the interobserver manual delineation 
variability was unlikely to substantively 
affect the outcomes of registration in 
this study (Fig E5 [online]).

Discussion

Our results confirm that the tested 
DIR algorithms provided detectable 
performance advantages over RIR in 
our specific head and neck diagnos-
tic CT and simulation CT data set for 
most ROI-based metrics. The perfor-
mance of specific DIR algorithms var-
ied across anatomic ROIs, with greater 

conformance of registering bone and 
cartilaginous ROIs with reference 
ROIs than that for muscle and vascu-
lar ROIs. Furthermore, the difference 
between the registration accuracy of 
different structures of the anatomic 
class varied substantially. For example, 
certain bone structures (eg, the clavi-
cles) showed more distance error and 
reduced conformance as compared 
with other bone ROIs, likely due to 
the wide variation in shoulder position 
between both images. Another exam-
ple is the relatively higher number of 
registration errors of tongue muscula-
ture ROIs and velar ROIs in the region 
adjacent to intraoral dental stents with 
simulation CT. Our QA method also 
demonstrated unanticipated algorithm 
dependencies, such as STR, between 



HEAD AND NECK IMAGING: Registration of Diagnostic and Radiation Therapy–Simulation CT Images	 Mohamed et al

760	 radiology.rsna.org  n  Radiology: Volume 274: Number 3—March 2015

Figure 4 (continued),  (b) Box plots of 95% Haussdorff distance analysis for each registration method are shown according to anatomic ROI category. OF 
= optical flow, ST= soft tissues, 95% HD = 95% Hausdorff distance.

Figure 4 (continued)

simulation CT and diagnostic CT. STR 
notably affected some algorithms dis-
proportionately, which was most evi-
dent with B-spline image fusions.

Several previous studies have served 
to validate the use of DIR algorithms 
in image-guided radiation therapy for 
head and neck cancer. Approaches 
used to quantify the performance of 
distinct DIR in these studies include 
landmark identification (12), ROI-
based comparison (3,10,13,34,35), 
and computational phantom defor-
mation (8,9,36,37); each of these 
methods has specific caveats and limi-
tations of application. In the examined 
setting of diagnostic CT and simula-
tion CT coregistration, the application 
of an evenly and densely distributed 
matrix of anatomic landmark points 

is intuitively understandable and, with 
sufficient point placement, exception-
ally spatially accurate and statistically 
robust as a validation method (24). 
Point placement is, nonetheless, com-
paratively resource intensive, requir-
ing accurate manual identification of 
hundreds or thousands of points (24). 
Point placement in the head and neck 
is technically complicated secondary 
to substantial variation in patient po-
sition, image acquisition parameter 
differences (especially STR, which is 
a substantial limitation of voxelwise 
point identification), and tubular inter-
nal anatomy of soft-tissue ROIs in the 
neck, which enhances the difficulty of 
manually placing reproducible matched 
points in paired diagnostic CT and sim-
ulation CT image sets. For this effort, 

small-scale landmark point placement 
(approximately 100 points) was used 
as an intermediary step in our qual-
ity assurance chain for optimization of 
noncommercial DIR settings; however, 
large-scale landmark point registration 
efforts, while underway, are yet to be 
completed by our group, owing to the 
limitations listed.

As a part of this effort, we sought 
to develop a “head and neck QA ROI 
library,” as a robust set of labeled 
anatomic ROIs, to properly repre-
sent the unique characteristics of the 
head and neck anatomy, which con-
tains multiple structures of different 
shapes, sizes, and intensity gradients 
in Hounsfield units. ROI-based assess-
ments, as used in the present series 
(ie, carefully and rigorously reviewed 
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and curated independently by two ra-
diation oncologists after initial manual 
segmentation), give insight into chang-
es of shape, volume, and location of a 
structure. Thus, ROI or ROI category–
specific performance differences can 
be ascertained, a feature that may be 
overlooked with “anatomically agnos-
tic” DIR QA approaches, such as point 
registration or image intensity match-
ing. Likewise, the large number of ROIs 
and ROI categories used in this QA 
workflow more nearly approximate the 
range of DIR algorithm performance 
across anatomic subsites in the head 
and neck, as opposed to “sample ROI” 
methods or use of a limited number 
of reference ROIs, which may under-
represent interregional DIR variation.

Only a few investigators have val-
idated the registration of diagnostic 
CT and simulation CT images, two 
of which have addressed the regis-
tration of pretherapy diagnostic posi-
tron emission tomography/CT images 
with simulation CT images (15,16), 
while in two other studies, the regis-
tration of simulation CT images with 
postrecurrence diagnostic CT images 

was examined (17,18). The validation 
methods for DIR assessment in those 
studies varied from calculating the root 
mean squared error from an observ-
er’s set of marked anatomic landmarks 
(15) to overlap indexes and center 
of mass comparison for sample ROIs 
(16–18). Ireland et al (15) and Hwang 
et al (16) showed that, in accordance 
with our results, DIR achieved supe-
rior performance to RIR. Additionally, 
Due et al (18) showed that DIR has 
higher reproducibility than RIR in re-
peated registration of center of mass 
points used to identify the origin of 
local-regional recurrences mapped to 
original simulation CT images. These 
results should call into critical question 
the utility of RIR as an accurate tool 
for head and neck registration extra-
cranially, and we advise cautious use 
of RIR as only a “rough guide” rather 
than a serially implemented clinical 
tool for diagnostic CT and simulation 
CT head and neck workflows. However, 
although optical flow (12) and demons 
(3,10,36) algorithms have been stud-
ied and have shown utility in adaptive 
radiation therapy applications, they 

failed to evince comparable results in 
the specific setting of head and neck 
diagnostic CT and simulation CT image 
coregistration.

Several limitations must be noted. 
As a single-institution study that in-
volved the use of retrospective image 
data, the standard caveats apply. Given 
this particular anatomic site (head and 
neck) and the fact that image sets (di-
agnostic CT and simulation CT) were 
acquired by using standard institutional 
operating procedures, excessive gener-
alization regarding DIR algorithm per-
formance in other anatomic sites or dif-
fering acquisition settings is potentially 
specious. Since the development of this 
QA process and ROI library was exceed-
ingly resource intensive, owing to the 
time required to manually segment and 
review a comparatively massive number 
of anatomic ROI structures, this library 
of paired diagnostic CT and simulation 
CT images and ROI structure sets is pro-
vided as anonymized DICOM radiation 
therapy files to any other researchers 
at http://figshare.com/authors/Abdal-
lah_Mohamed/551961. Additionally, 
the effect of surgical resection or in-
duction chemotherapy on the quality 
of registration was not investigated in 
the present study, since we sought to 
benchmark best performance scenarios 
and exclude the effect of anatomic dis-
tortion caused by huge tumors.

In summary, we developed a QA 
framework by using a robust, curated, 
manually segmented anatomic ROI li-
brary to quantitatively assess different 
image registration strategies used for 
coregistration of head and neck diag-
nostic CT images with simulation CT 
images. The presented QA framework 
proved that DIR algorithms for most 
of the tested metrics improved regis-
tration performance over RIR, yet with 
notable variability between different 
algorithms, suggesting that careful val-
idation of DIR before clinical imple-
mentation (eg, target delineation) is 
imperative.
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Effect of Variability in Simulation CT Section Thickness Reconstruction on the 
Performance of Registration Algorithms

Registration Method STR , 3 mm* STR  3 mm* P Value
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