- Terminology
- Solute is a dissolved substance.
- Solvent is the most abundant part of the solution; the compound of a solution in which the other components are considered to be dissolved in.
- Solution is a homogenous mixture.
- Concentration (use both links and learn from them they are great):
- Concentration calculations: use this link http://www.chem.purdue.edu/gchelp/howtosolveit/Solutions/concentrations.html to learn all the different types!
- Various examples to calculation problems and solutions: http://www.chemteam.info/Solutions/Dilution.html

- Solubility rules (memorize):

Ion	General Solubility Rule
$\mathrm{NO}_{3}{ }^{-}$	All nitrates are soluble
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{\text {- }}$	All acetates are soluble ($\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ only moderately)
$\mathrm{Cl}^{\prime}, \mathrm{Br}^{\prime}, \mathrm{I}$	All chlorides, bromides andiodides are soluble except Ag^{*}. Pb^{+}and $\mathrm{Hg}_{2}{ }^{2+}$. $\left(\mathrm{PbCl}_{2}\right.$ is slightly soluble in cold water and moderatel soluble in hot water.)
$\mathrm{SO}_{4}{ }^{2}$	All sulfates are soluble except those of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ca}^{2+}$ and Sr^{2+}
$\mathrm{CO}_{3}{ }^{2+}$ and $\mathrm{PO}_{4}{ }^{3 .}$	All carbonates and phosphates are insoluble except those of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and $\mathrm{NH}_{4}{ }^{+}$. (Many acid phosphates are soluble).
OH^{+}	All hydrozides are insoluble except those of Na^{+}and K^{+}. Hydroxides of Ba^{2+} and Ca^{2+} are slightly soluble.
S^{2}	All sulfides are inscluble except those of $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$and those of the alkaline earths: $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{{ }^{+}}$and Ba^{2+}. (Sulfides of Al^{3+} and Cr^{3+} hydrolyze and precipiate as the corresponding hydroxides.
$\mathrm{Na}^{+}, \mathrm{K}^{+}$and NH_{4}^{+}	All salts of sodium ion, potassium ion and ammonium ion are soluble excent several uncommon ones.

- Henry's law and gas solubility
- Henry's law states that the solubility of a gas is directly proportional to its partial pressure.
$\mathrm{S}=\mathrm{k}_{\mathrm{H}} \mathrm{P}$
- $\mathrm{k}_{\mathrm{H}}=$ Henry's constant (temperature dependent)
- $\mathrm{P}=$ partial pressure of gas
- Gases are most soluble at low temperatures and high pressures.
- Energetics and dissolving
- 2 major steps of dissolving: solid -(1)--> gaseous ions -(2)--> dissolved aqueous ions
- (1) is lattice enthalpy. This is the for $\Delta \mathrm{H}_{\mathrm{rxn}}$ for solid \rightarrow gas ions. $\Delta \mathrm{H}_{\mathrm{L}}>0$ (endothermic)
- (2) is enthalpy of hydration. This is the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for gas ions \rightarrow dissolved aqueous ions. $\Delta \mathrm{H}_{\mathrm{hyd}}<0$ (exothermic)
- Enthalpy of solution $\Delta \mathrm{H}_{\text {sol }}=\Delta \mathrm{H}_{\mathrm{L}}+\Delta \mathrm{h}_{\text {hyd }}$. This is the change in molar enthalpy when a substance dissolves at a constant pressure.
- If $\Delta \mathrm{H}_{\text {sol }}<0$, the solution temperature increases since the reaction is exothermic and will release heat to the surroundings.
- If $\Delta \mathrm{H}_{\text {sol }}>0$, the solution temperature decreases since the reaction is endothermic and will absorb heat from the surroundings.

- Solubility product constant
- soluble vs. insoluble
- Soluble solutes dissociate completely ("one way rxn")
- Insoluble solutes are in equilibrium ("two way rxn")
- $\mathbf{K}_{\text {sp }}$ is the equilibrium constant for a salt dissolving in water reaction:

- $\mathrm{K}_{\text {sp }}$ describes the saturation point of the solute; that is, it tells you the amount of products formed when the maximum amount of solid has dissolved.
- Looking at the K_{sp} value above, we can say that the solubility (s) of AgCl is $1^{*} 10^{-5} \mathrm{M}$.
- The molar solubility of a salt (s) is the number of moles that can dissolve per L of water.
- Q and $\mathrm{K}_{\text {sp }}$
- When $\mathrm{Q}=\mathrm{K}_{\mathrm{sp}}$, you are at saturation point.
- When $\mathrm{Q}>\mathrm{K}_{\text {sp }}$, there is precipitation as the reverse reaction is favored.
- When $\mathrm{Q}<\mathrm{K}_{\text {sp }}$, there is dissolving as the forward reaction is favored.
- Common ion effect: decrease in the solubility of an ionic salt because there is a "common" ion present in solution already. This causes a shift to the left (precipitation).
- Example problem: K_{sp} of $\mathrm{Fe}(\mathrm{OH})_{2}$ is $1.6^{*} 10^{-15}$. What is the solubility of $\mathrm{Fe}(\mathrm{OH})_{2}$ in 0.025 M FeCl_{2} ?
- (1) Draw an ICE box and fill in the chart:

	$\mathrm{Fe}(\mathrm{OH})_{2} \rightarrow$	$\mathrm{Fe}^{2+}+$	$2 \mathrm{OH}^{-}$
I	XXXXXXXXXX	0.025 M	0 M
C	XXXXXXXXXX	+x	+2 x
E	XXXXXXXXXX	$0.025+\mathrm{xM}$	2 x M

- Why is the initial concentration of $\mathrm{Fe}^{2+} 0.025 \mathrm{M}$ and not 0 M ? Because you are adding the salt to a dissolved FeCl_{2} solution. Since FeCl_{2} will have completely dissolved, there are Fe and Cl ions in the solution and you need to account them in the ICE box.
- (2) Write out the $K_{\text {sp }}$ equation and solve for "x." To help make the calculation easy on the DAT, ignore the " +x " value to the common ion. $\mathrm{X}=$ solubility

$$
\begin{gathered}
1.6 * 10^{-16}=(0.025+x)(2 x)^{2} \\
1.6 * 10^{-16}=(0.025)\left(4 x^{2}\right) \\
1.6 * 10^{-16}=0.1 x^{2} \\
\left(1.6 * 10^{-16}\right)\left(1.0 * 10^{-1}\right)=x^{2} \\
16 * 10^{-16}=x^{2} \\
4 * 10^{-8} M=x
\end{gathered}
$$

- The "saturated solution problem"
- Example: What will happen if 0.05 moles of $\mathrm{NaCl}_{(s)}$ are added to 1 L of a saturated solution of $\mathrm{AgCl}\left(\mathrm{K}_{\text {sp }}=1 \times 10^{-10}\right)$?
- (1) draw out the dissolving reaction that occurs and the corresponding Ksp
- (2) since you are given the Ksp value, solve for solubility. This gives you the concentration of the Ag and Cl ions at saturation (equilibrium).
- (3) Add 0.05 M to the Cl - concentration and calculate Q . Since $\mathrm{Q}>\mathrm{K}, \mathrm{AgCl}$ will precipitate as the reverse reaction is favored.

Concept Question

What will happen if 0.05 moles of $\mathrm{NaCl}_{(\mathrm{s})}$ are added to 1 L of a saturated solution of AgCl

$$
\left(\mathrm{K}_{\mathrm{sp}}=1 \times 10^{-10}\right) ?
$$

$$
\begin{aligned}
& \mathrm{AgCl}_{(\mathrm{ss}} \Leftrightarrow \mathrm{Ag}_{(\text {(aq) }}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} \\
& \mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right][\mathrm{Cl}]=1 \times 10^{-10} \\
& \mathrm{~S}=1 \times 10^{-5} \\
& \mathrm{Q}=\left[1 \times 10^{-5}\right]\left[1 \times 10^{-5}+0.05\right]>\mathrm{K}
\end{aligned}
$$

A. No change
B. AgCl will dissolve C. AgCl will precipitate

- pH change can also affect solubility. This can only occur if an acid-base reaction can occur. Anions of weak acids will significantly be affected. This is because anions of weak acids increases pH . A- + $\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{OH}^{-}+\mathrm{HA}$. Lowering pH adds more $\mathrm{H}^{+} . \mathrm{H}^{+}$will react with OH^{-}, and lower the [$\left.\mathrm{OH}^{-}\right]$. This pushes the reaction to the right and lowers the [A-]. $\mathrm{AB} \leftrightarrow \mathrm{A}^{-}+\mathrm{B}^{+}$. As [A^{-}] goes down, this reaction is pushed to the right and solubility increases.
- Colligative properties are properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the type of chemical species present. There are 4 colligative properties that we focus on: vapor pressure lowering, boiling point elevation, freezing point depression, and osmotic pressure.
- Vapor pressure and vapor pressure lowering
- Vapor pressure is the equilibrium constant for the liquid \leftrightarrow gas reaction.

$$
\mathrm{H}_{2} \mathrm{O}_{(l)} \leftarrow \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \text { where } \mathrm{K}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}
$$

- In general, liquids boil when their vapor pressure equals the atmospheric pressure. A liquid with a higher vapor pressure boils at a lower temperature and a liquid with a lower vapor pressure boils at a higher temperature.
- If you go to a higher altitude, atmospheric pressure decreases. Since the liquid needs to achieve a lower $\mathrm{P}_{\text {vap }}$ to equal $\mathrm{P}_{\text {atmosphere }}$, boiling point decreases.
- If you increase atmospheric pressure (i.e. go to a lower altitude), you increase the boiling point.
- Unrelated but important: increasing altitude increases melting point if solid is less dense than liquid and decreases melting point if the liquid is more dense than the solid.
- The normal boiling point is defined as the temperature at which the vapor pressure of the liquid is 1 atm .
- What affects vapor pressure?
- Vapor pressure decreases with increasing IMF.
- Vapor pressure increases with increasing boiling point.
- Vapor pressure decreases with increasing molar mass.
- Note: vapor pressure does not depend on the surface area of a liquid.
- Vapor pressure lowering says that the vapor pressure of a solvent in solution is always lower than the vapor pressure of the pure solvent. This lowering is quantitatively described in Raoult's Law.
- Raoult's Law states that the vapor pressure of a solvent above a solution is equal to the vapor pressure of the pure solvent at the same temperature scaled by the mole fraction of the solvent present. $\mathrm{P}_{\text {solution }}=\mathrm{X}_{\text {solvent }} \mathrm{P}_{\text {solvent. }}$.
- In a liquid:liquid mixture, the total vapor pressure is equal to the sum of the individual pressures: $P_{\text {vap }, \text { tot }}=P_{\text {vap }, A}+P_{\text {vap }, B}$.
- Raoult's Law accurately describes vapor pressure lowering only in ideal solutions. Solutions are most ideal at low solute concentrations:
- $\quad \mathrm{x}<0.1 \mathrm{M}$ for non-electrolyte (molecular) solutions.
- $\mathrm{x}<0.01 \mathrm{M}$ for electrolyte (ionic) solutions.
- Azeotropes are real liquid:liquid mixtures and deviates from raoult's law. Two different types:
- When the 2 liquids have dissimilar IMFs (i.e. polar + non-polar liquid):
- $\Delta H_{m i x}>0$ so the mixing process is endothermic.
- The mixture's boiling point decreases.
- The total vapor pressure is higher than what Raoult's law would predict.

Ethanol Benzene
Composition

- When the 2 liquids have similar IMFs (i.e. 2 polar liquids):
- $\Delta H_{m i x}<0$ so the mixing process is exothermic.
- The mixture's boiling point increases.
- The total vapor pressure is lower than what Raoult's law would predict.
- Boiling point elevation and freezing point depression
- When a solute is added to a liquid, the boiling point of the resulting solution increases. This is boiling point elevation. In addition, the freezing point of the resulting solution decreases; this is called freezing point depression.
- Quantitatively, we can describe the changes in the boiling point and the freezing point as follows: $\Delta T_{f}=i K_{f} m$ (freezing point depression) $\Delta T_{B}=i K_{B} m$ (boiling point elevation)
- m = molality
- K_{f} and K_{b} are constants - depends on the solvent
- i = van't hoff factor
- The van't hoff factor (i) expresses how many ions and particles are formed (on average) in a solution from one formula unit of solute.
- For ionic compounds: the total number of ions that make up the compound is equal to the van't hoff factor. For example, $\mathrm{i}=4$ for $\mathrm{K}_{3} \mathrm{PO}_{4}$ since 3 potassium ions and 1 phosphate ion make up the compound ($3+1=4$).
- For molecular compounds, $\mathrm{i}=1$ because they don't dissociate. For example, $\mathrm{i}=1$ for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
- Treat strong acids/bases like ionic compounds because they dissociate completely! For example, $\mathrm{i}=2$ for $\operatorname{HBr}(1 \mathrm{H}+1 \mathrm{Br}=2)$.
- Weak acids/bases partially dissociate. To find i, use the equation: $i=\frac{\text { mol particles }}{\text { mol solute }}$.
- Gibbs vs. temperature graphs for liquid and solutions
- Remember: $G^{o}=-T S^{0}+H^{0}$. We can treat this like $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ and graph it. Temperature is on the x-axis and gibbs free energy is on the y-axis.
- Freezing point depression: The temperature at which the solid and the pure-liquid intersects (equilibrium since their gibbs values are equal) is the freezing-point. Compared to the pure liquid, the solvent has the same slope but a lower y-intercept. Therefore, the intersection between the solvent and the solid is farther to the left. This shows freezing-point depression.

Freezing Point Depression

Lower T needed for solution/solid equilibrium

- Boiling point elevation: The temperature at which the vapor and the pure liquid intersect is the boiling point. Compared to the pure liquid, the solvent has the same slope but a lower yintercept. Therefore, the intersection between the solvent and the vapor is farther to the right. This shows boiling point elevation.

Boiling Point Elevation

raise T to reach equilibrium between solution and gas

- Osmotic pressure
- Osmosis is the flow of a solvent through a semipermeable membrane into a more concentrated solution. Solvent will flow until osmotic equilibrium is reached (occurs when the free energies of the diffusible molecules are the same on the two sides of the membrane).
- Osmotic pressure (Π) is the pressure needed to stop the flow.
- Hydrostatic pressure is the pressure created by the difference in height of the columns after flow $=$ П.
- Formula for osmotic pressure:

$$
\Pi=i R T c
$$

- $\mathrm{c}=$ concentration in $\mathrm{mol} / \mathrm{L}$ (molarity)
- $\mathrm{R}=0.08206 \frac{\mathrm{~L} * \mathrm{~atm}}{\mathrm{~K} * \mathrm{~mol}}$
- Real ions in water and colligative properties
- Assuming non-ideal behavior, ions have a smaller decrease in freezing point, boiling point elevation, etc.
- small for $+/-1$ ions, moderate for $+/-2$ ions, and large for $+/-3$ ions.

