RNA interference (RNAi) is a system within living cells that helps to control which genes are active and how active they are. Two types of small RNA molecules – microRNA (miRNA) and small interfering RNA (siRNA) – are central to RNA interference. RNAs are the direct products of genes, and these small RNAs can bind to specific other RNAs and either increase or decrease their activity, for example by preventing a messenger RNA from producing a protein. RNA interference has an important role in defending cells against parasitic genes – viruses and transposons – but also in directing development as well as gene expression in general.
The RNAi pathway is found in many eukaryotes including animals and is initiated by the enzyme Dicer, which cleaves long double-stranded RNA (dsRNA) molecules into short fragments of ~20 nucleotides. One of the two strands of each fragment, known as the guide strand, is then incorporated into the RNA-induced silencing complex (RISC). The most well-studied outcome is post-transcriptional gene silencing, which occurs when the guide strand base pairs with a complementary sequence of a messenger RNA molecule and induces cleavage by Argonaute, the catalytic component of the RISC complex. This process is known to spread systemically throughout the organism despite initially limited molar concentrations of siRNA.